
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6
Quantifying stochastic resonance in bistable systems:
Response vs residence-time distribution functions

Mee H. Choi, R. F. Fox, and P. Jung*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Received 10 September 1997!

A wealth of research on stochastic resonance~SR! during the past decade has led to different ways of
defining this phenomenon. Most prominent are measures based on the response function and on the residence-
time distribution function. While the theory for the response functions is well developed, a firstfully systematic
theory for the residence-time distribution functions is developed in this paper. Subsequently we reconsider
formerly introduced measures of SR based on the residence-time distribution and compare with those based on
the response function.@S1063-651X~98!08005-2#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

In the early 1980s, Benziet al. @1# and Nicoliset al. @2#
discovered a phenomenon that they have termed stoch
resonance@3#. This effect allows the enhancement of a pe
odic signal by a bistable device when a certain dose of n
is added. Since the effect was introduced in conjunction w
a ~rather specific! model to explain the more or less period
occurrences of ice ages, it took until the late 1980s before
universality and general applicability of this effect were re
ognized. A wealth of theoretical and experimental pap
followed, extending the notion of stochastic resonance~for
extensive reviews, see@4,5# and for a collection of papers
see @6,7#! and discovering new applications. During the
times, new measures of stochastic resonance were in
duced. In the original papers mentioned above, the enha
ment of the periodic signal was characterized by the respo
amplitude at the frequency of the periodic signal. Fauve
Heslot @8# and McNamara, Wiesenfeld, and Roy@9# intro-
duced the signal-to-noise ratio~SNR! to quantify SR, a quan-
tity used in engineering to describe the quality of a sig
within a noise background. While both quantities, the am
tude and the SNR, undergo a resonancelike curve as a f
tion of the noise level, the maxima are located at differ
values of the noise strength. Although the location of
maximum of the response amplitude~in contrast to the SNR!
can be understood approximately in terms of a time-sc
matching condition@10#, it was shown by Lu and Fox@11#
that this matching condition does not become exact in
limit. Furthermore, neither the response amplitude nor
SNR undergoes a maximum when thedriving frequencyis
varied.

Other measures of SR, based on the residence-time d
bution of a bistable, periodically driven system@12–14#,
have been introduced to characterize SR. Zhouet al. @13#
studied the heights of peaks in the residence-time distr
tion at odd multiples of the half-period of the driving. The
go through maxima as a function of the noise. Gammait
et al. @15# introduced the area under the peak of the re
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dence-time distribution at the half-period of the driving as
measure for SR. They have shown that this area goes thro
a maximum as a function of the noiseor the driving fre-
quency and concluded that SR is a bona-fide resonance.
noise strength that maximizes the area under the peak, h
ever, does not match either the value of the noise that m
mizes the response amplitude or that which maximizes
SNR.

Although it seems generally known that all these quan
fiers of SR yield different maximizing noise strengths, it h
not yet been attempted to quantitatively pin down these
ferences. The paper is organized as follows. In Sec. II,
briefly introduce the model, i.e., a periodically force
Brownian particle, moving overdamped in a bistable pote
tial. In Sec. III, we review the properties of the linear r
sponse amplitude. In Sec. IV, escape-time distributions
residence-time distribution are discussed. Although they
of importance especially in the context of neurophysiologi
applications, a fully systematic theory has not yet been
forward. Based on a rate equation, we extend earlier theo
by Zhou, Moss, and Jung@13# and Lofstedt and Coppersmit
@16# to obtain a fully systematic analytic expression for t
residence-time distribution for weak periodic signals~linear
regime! and an asymptotic theory for the strongly nonline
regime. Based on this fully analytical result, it is then sho
~at least for small signal amplitudes! that SR isnot a bona-
fide resonance, notwithstanding the conclusions in@15#.

II. MODEL AND BASIC EQUATIONS

From the early times in SR research on, the stand
model for study was an overdamped particle moving in
symmetric bistable potential under the influence of noise
periodic forcing. Although things can be formulated mu
more generally, we will also adopt this model in this pap
The Langevin equations for this model reads in suitable n
malized units@4#,

ẋ52V8~x!1A sin~Vt !1j~ t !, ~1!

with the potential

V~x!5
1

4
x42

1

2
x2 ~2!io
6335 © 1998 The American Physical Society
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and white, zero mean Gaussian noisej(t) characterized by

^j~ t !&50,

^j~ t !j~ t8!&52Dd~ t2t8!, ~3!

whereD describes the strength of the noise. We callA the
amplitude andV the frequency of the periodic driving.

Equivalently, this Markovian, stochastic process is d
scribed by a Fokker-Planck equation for the transition pr
ability densityP(x,tux0 ,t0),

]P~x,tux0 ,t0!

]t
5L~x,t !P~x,tux0 ,t0!, ~4!

with the Fokker-Planck operator

L~x,t !52
]

]x
~x2x31A sin Vt !1D

]2

]x2 ~5!

and the initial condition

P~x,t0ux0 ,t0!5d~x2x0!. ~6!

III. THE RESPONSE TO PERIODIC DRIVING
AND STOCHASTIC RESONANCE

Although there are many ways to describe the respons
a particle moving in the double well potential due to t
periodic forcing, we use here the ensemble average^x(t)&
@averaged over the realizations of the noise termj(t)#, de-
fined via the transition probability density as

^x~ t !&5E
2`

`

P~x,tux0 ,t0!xdxU
t0→2`

. ~7!

This asympototic mean value vanishes in the absenc
periodic forcing for the symmetry of the double well syste
and can be written in leading order of the driving amplitu
~see, e.g.,@4#! as

^x~ t !&5Ax~V,D !exp~ iVt !1c.c., ~8!

with the susceptibilityx(V,D). In a two-state picture tha
only considers instantaneous jumping between the pote
wells, the susceptibility assumes the simple form

x~V,D !5
1

D

2r K~D !^x2&0

2r K~D !1 iV
. ~9!

The Kramers’ escape rater K(D) @17# ~in our dimensionless
units! is given by

r K~D !5
1

A2p2
expS 2

1

4D D , ~10!

and the moment̂x2&0 of the unperturbed (A50) stationary
probability density reads@4#

^x2&05
1

2A2D

D23/2~21/A2D !

D21/2~21/A2D !
, ~11!
-
-

of

of

ial

which contains the parabolic cylinder functionsDn(x). The
response amplitudea(V,D), given by the modulus of the
susceptibility

a~V,D !5Aux~V,D !u5
A^x2&0

D

2r K~D !

A4r K
2 ~D !1V2

, ~12!

runs through a maximum as a function of the noise stren
D. This phenomenon has been termed stochastic reson
@1#. The noise valueD0 , at which the amplitude assumes
maximum, is given by the zero of a transcendental functi
We also want to note that the square of the response am
tudea(V,D)2 is proportional to the intensity of the spike i
the power spectrum of the stochastic processx(t) at the driv-
ing frequencyV and, therefore, a measure of how period
the stochastic motion is.

With intuitive arguments, Jung and Ha¨nggi @10# have con-
jectured that the maximum should be defined by the con
tion that the period of the drivingT52p/V matches twice
the dwell timeTK(D)51/r K(D) of the system in one wel
since the hopping is then optimally synchronized with t
driving. We denote the value of the noise at which this tim
scale matching~TSM! condition is fulfilled byDTSM, i.e.,
V5pr K(DTSM). It has turned out, however, that althoug
this condition is fulfilled approximately and the prediction
by using it are qualitatively correct, there is no limit in whic
it becomes exact@11#. As a matter of fact, the relative devia
tion betweenD0 and DTSM exhibits a minimum at a finite
value of the driving frequency, but increases as the driv
frequency becomes smaller or larger@11#. Comparison with
full numerical solutions of the Fokker-Planck equatio
shows@11# that the disagreement ofD0 with DTSM is not due
to a technical shortcoming of the linear response approxi
tion ~always assuming that the modulation amplitudeA is
kept small in comparison with the noise strengthD! but is
rather an inherent property of the system.

Another important property of the response amplitude
that it—unlike for a dynamical resonance—decays mo
tonically as a function of the frequency. This behavior u
derpins the statistical nature of SR.

Another common measure of SR related to the respo
amplitude is the signal-to-noise ratio~SNR!. It is based on
the shape of the power spectrum, consisting of a br
Lorentzian-like background with additionald spikes at odd
multiples of the driving frequency. Thed spikes reflect the
periodic component of the motion of the particle in th
double well potential. The weight of thed spike at the fre-
quency of the driving,gV , which describes the intensity o
this periodic component, has been shown to be proportio
to the square of the response amplitudea(V,D) ~see, e.g.,
@4#!, i.e.,

gV5
p

2
ua~V,D !u25~1/2!pA2ux~V,D !u2 . ~13!

To leading order ofA, the signal-to-noise ratio is obtaine
from Eq. ~13! by dividing twice @18# the weightgv by the
power spectrum of the unperturbed system at the driv
frequency, i.e.,
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S0~V!5
4r K~D !^x2&0

4r K
2 ~D !1V2 ~14!

yielding

RSNR5
pA2

D2 r K~D !^x2&0 . ~15!

The SNR runs through a maximum as a function of
noise, but at a valueDSNR that does not agree withDTSM or
D0 . Most notably,DSNR does not even depend on the drivin
frequency@at least, within the approximation leading to E
~15!#. It is evident that the peak position in the signal-t
noise ratio therefore does not directly reflect synchroniza
between the hopping and the driving@19#.

IV. RESIDENCE-TIME DISTRIBUTION FUNCTION

Other measures for stochastic resonance are based o
residence-time distribution of the system in one poten
well. In the absence of periodic driving, the two basins
attraction of our model,x,0 andx.0, are separated by th
saddle pointxu50. Escaping from one potential well into th
other one, the particle has to pass the unstable pointxu . The
residence times for a particle in one well are the times
tweensuccessfulcrossings ofxu ; successful meaning that
does not immediately recross in the boundary layer aro
xu . The residence times are statistically distributed acco
ing to the residence-time distribution function~RTDF!.

In the presence of periodic forcing, the pointxu50 is not
the separation point of the basins of attractions at all time
has been shown~see, e.g.,@4#! that the basins of attractio
are separated by an unstable periodic orbit located in
vicinity of the top of the barrier. The attractors are, in t
presence of periodic forcing, stable limit cycles located
the vicinity of the former potential minima~as long as the
driving amplitude is small!. The residence times are no
defined as the time intervals between two successful cr
ings of the unstable periodic orbit.

In the presence of driving, we distinguish betwe
residence-time and escape-time distribution functions.
escape-time distribution function describes the distribut
of times the particle spends in one well, conditioned by
entrance phase of the external driving, i.e., by the phas
the external driving when the particle enters the respec
well. The residence-time distribution function is the distrib
tion of times the particle spends in one well, irrespective
the entrance phase of the external driving. In the absenc
periodic driving, both distribution functions are equivalen

A. Escape-time distributions

A theory for escape time distributions has been put f
ward by Zhouet al. @13# on the basis of a rate equation fo
the populations of the left„pl(t)… and right„pr(t)… basin of
attraction~termed ‘‘wells’’ from now on!, i.e.,

ṗr~ t !5r 1~ t !pl~ t !2r 2~ t !pr~ t !,

ṗl~ t !5r 2~ t !pr~ t !2r 1~ t !pl~ t !, ~16!
e

n

the
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f

-
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-
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with the forward and reverse transition ratesr 2(t) andr 1(t)
given by ~see, e.g.,@4#!

r 6~ t !5r K~D !

3S 17
3

4
A sin~Vt1f0!2

69

32
A2sin2~Vt1f0! D

3expS 6
A

D
sin~Vt1f0!2

3A2

4D
sin2~Vt1f0! D

~17!

and the Kramers’ escape rater K(D) of the unperturbed sys
tem Eq.~10!. The expressions Eq.~17! for the escape rate
have been derived under the assumptions that the peri
modulation is slower than the local relaxation rate~i.e., V
!1!, and that the amplitude of the driving is small again
the barrier height, i.e.,A!A4/27 ~in our dimensionless
units!.

The reduction from the full Fokker-Planck equation to t
rate equation is based on the clear-cut time-scale separ
between relaxational modes within the potential well and
relaxation mode across the barrier, valid if the noise is sm
against the barrier height, i.e.,D!0.25. The time scale sepa
ration is quantified by one exponentially small eigenvalue
the Fokker-Planck operator, which dominates the rel
ational dynamics across the barrier. The time scale on wh
the master equation is correct is large in comparison to
laxation times within the potential wells. Note that with
these inequalities, the ratioa[A/D and b[r K(D)/V can
still be small or large.

In the following, we consider, without loss of generalit
the escape out of the right potential well, i.e., particles
absorbed after they escape the right well. The particle en
the right well at timet0 ; we specify the phase of the period
driving at timet0 by f05Vt0 . Starting to measure the time
t, when the particle enters the right well, the escape-ti
distribution of the right well is obtained from the rate equ
tion ~16! as

r r~tuf0!5
1

Z
r 2~t!expS 2E

0

t

r 2~ t !dtD , ~18!

whereZ is a normalization constant. Throughout this pap
we use the convention that escape-time distributions va
identically for negative timest.

In the limit a5A/D→0, the integral in Eq.~18! can be
solved approximately, yielding for the escape-time distrib
tion of the right well

r r
a→0~tuf0!5r K~D !@11a f 1~t,f0!1a2f 2~t,f0!#

3exp„2b~11 1
4 a2!Vt… ~19!

with

f 1~t,f0!52sin~Vt1f0!2b@cos~Vt1f0!2cos~f0!#
~20!
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f 2~t,f0!5
1

2
sin2~Vt1f0!

1
1

8
b@sin„2~Vt1f0!…2sin~2f0!#

1
1

2
b2@cos~Vt1f0!2cos~f0!#2

1b sin~Vt1f0!@cos~Vt1f0!2cos~f0!#.

~21!

In order to obtain this result, terms of orderA, A2, andA2/D
have been neglected compared with terms of ordera
5A/D anda25A2/D2. The purely exponential decay in th
absence of the driving is weakly modulated.

For largeA/D, the integrals in Eq.~18! can be evaluated
by first integrating over integer multiples of the period a
then replacing the remaining integrand in Eq.~18! by a
Gaussian centered around its maximum, yielding@13#

r r
a→`~tuf0!5

1

Z
exp„2a sin~Vt1f0!…

3expF2bgH 2n2erfSAa

2
~f023p/2! D

1erfSAa

2
~Vt̄1f023p/2! D J G , ~22!

where t̄ is the timet modulo the period of the drivingT,
n5 int(t/T), g[Ap/(2a) exp(a) and erf(x) is the error
function. The Gaussian approximation also requires that
driving frequency is larger than the Kramers rater K(D);
otherwise, most of the escape takes place before the
grand reaches its maximum and the Gaussian is not an a
rate approximation. For the caseV!r K(D) one can derive
the following expression for the escape-time distribution:

r r
a→`,b→`~tuf0!5

1

Z
exp„2a sin~Vt1f0!…

3exp$2Vtb exp@2a sin~f0!#%.

~23!

The escape-time distributionr r
a→`(t,f0) consists of a

series of exponentially decaying peaks, separated by the
riod T of the driving.

For our symmetric double well potential, the escape-ti
distribution of the left well is obtained from the escape-tim
distribution of the right well by a phase shift ofp, i.e.,

r l~tuf0!5r r~tuf01p!. ~24!

B. Entrance and exit phase distribution

Given the entrance phasef0 for the right well, the exit
phasef5f01Vt can be obtained from the escape-time d
tribution by transforming from timet to phasef. Taking
into account the infinite valuedness of this transformati
e

te-
cu-

e-

e

-

,

one finds the conditional probability density for the ex
phasef of the right well ~see also@16#!,

Pr~fuf0!5
1

V (
n52`

`

r r S 1

V
~f2f012np!uf0D . ~25!

This is a periodic function of the exit phasef. The exit
phase distributionWr

ex(f) of the right well is given by the
integral

Wr
ex~f!5E

0

2p

Pr~fuf0!Wr
entr~f0!df0 , ~26!

whereWr
entr(f) is the entrance phase distribution of the rig

well. For the left well we can write down the analogou
relation

Wl
ex~f!5E

0

2p

Pl~fuf0!Wl
entr~f0!df0 . ~27!

The underlying assumption of these integral relations
the statistical independence of subsequent escape ev
Since escape events are rare events, the system spends
of the time in the potential wells. Correlations between
cape events are therefore negligibly small and the inte
relations above are a good approximation.

Since the exit distribution of the left attractor serves as
entrance distribution of the right attractor and vice versa,
obtain the closed set of integral equation~see also@16#!,

Wr
entr~f0!5E

0

2p

Pl~f0uf8!Wl
entr~f8!df8,

Wl
entr~f0!5E

0

2p

Pr~f0uf8!Wr
entr~f8!df8. ~28!

In the case of the symmetric potentials that we are discus
here, the conditional probabilities for the exit phases in
right and left wells are identical up to a phase shift byp. In
Ref. @16#, these integral equations have been solved num
cally and an analytical solution has been attempted. In
following, we show that these integral equations can
solved exactly in the limit of smallA/D leading to a number
of relevant terms additional to those obtained in@13# and
@16#.

1. Phase distributions for A/D˜0

Fitted with an approximate expression for the escape-t
distribution Eq.~19! for weak periodic forcing (A/D→0),
we are now in the position to compute the exit and entra
phase distributions. As a matter of fact, to compute
residence-time distribution function up to ordera2, we need
the phase distributions only up to leading ordera. The ker-
nels of the integral equations~28! can be constructed by
using Eq.~25! yielding
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Pr ,l~fuf8!5
b exp„2b~f2f8!…

12exp~22pb!
$17a sin~f!

7ab@cos~f!2cos~f8!#% , ~29!

wheref and f8 are defined within the interval@0:2p# and
have to be taken modulo 2p. The kernels are also periodi
functions off andf8 with a discontinuity atf5f8, which
is inherited from the escape-time distribution~discontinuity
at t50!.

In the absence of driving (A50), the kernel depends onl
on the difference of the phasesf andf8. The uniform phase
distribution is therefore the consistent solution of the set
integral equations.

We are solving the integral equations~28! by using a
series expansion. The starting point is the uniform entran
phase distribution of the right well, i.e.,Wr(f)51/(2p).
The first iterate yields for the entrance phase distribution
the left well

Wl
entr~f!5

1

2p F12
a

A11b2
sin~f1d1!G , ~30!

with the shift tand15b. The second iteration yields an en
trance phase distribution for the right well,

Wr
entr~f!5

1

2p F11
a

A11b2
sin~f1d1!

2
ab

11b2 sin~f1d11d2!G , ~31!

with the additional shift tand2521/b. By carefully inspect-
ing the additional terms due to further iterations of the in
gral equations, one finds that they are self-similar from ite
tion to iteration, allowing exact summation, i.e.,

Wr ,l
entr~f!5

1

2p F16
a

A11b2
sin~f1d!

7
a

A11b2 (
n51

`
bn~21!n11

~11b2!n/2 sin~f1d11nd2!G .

~32!

The summation can be converted into a geometric se
allowing exact evaluation. Eventually one arrives at t
simple result

Wr ,l
entr~f!5

1

2p F16
a

A114b2
sin~f1 d̄!G ~33!

with tan(d̄)52b.
For frequencies large compared to the rater K , we recover

in leading order an entrance phase distribution for the
~right! well proportional to exp„7A/D sin(f)…, first obtained
heuristically in @13#. It shows a maximum at the phasefm
5(3/2)p(fm5p/2), i.e., when the potential is tilted fully to
the left ~right!. These maxima signify preferred jump phas
f

e-

f

-
-

s,
e

ft

s

at f5(3/2)p(f5p/2). Our present systematic analys
shows that for decreasing frequencies~increasingb!, the
peak shifts to smaller phases and the phase distribution
tens out@see Figs. 1~a! and 1~b!#. The amplitude of the varia-
tion from the uniform phase distribution is, in leading ord
of a, a monotonic function of the frequency and the no
strength and shows no evidence of a resonant behavior.

2. Phase distributions for A/D˜`

For largeA/D, we have to distinguish the case of sma
driving frequenciesV!r K(D) and large~yet adiabatically
slow in comparison to intrawell relaxation! driving frequen-
cies r K!V!2. Note that for largeA/D and smallA, e.g.,
A,0.1, the noise has to be of the order of 0.01 or smal
implying a Kramers’ rate of the order exp(225) or smaller.
The first caseV!r K(D), therefore, requires extremely sma
frequencies. The summation in Eq.~25! collapses into a
single term and the phase integration over the initial ph
can be carried through, yielding a uniform phase distributi
In the caser K!V!2, we obtain by inserting Eq.~22! into
Eq. ~25! the conditional probability for the phase

FIG. 1. The exit-phase distribution of the left well is shown f
~a! D50.10, A50.01, andV50.01. Results of a numerical simu
lation of the Langevin equation~1! ~wiggly line! are compared with
the analytical solution in Eq.~33! ~dashed line!. In ~b! we have used
the larger driving frequencyV50.05. Most important, the maxi-
mum moves for decreasing driving frequencies away fromp/2 to
smaller angles.
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Pr ,l~fuf8!5
1

12exp~22g!
exp„7a sin~f!…

3expF2gb erfXAa

2 S f2
3

2
p D C

1gb erfXAa

2 S f82
3

2
p D CG . ~34!

Since forV@r K , g is a small quantity, the contribution
of the error functions can be neglected and the conditio
probability for the exit phase becomes identical with the e
phase distribution of the right well or equivalently with th
entrance phase distribution of the left well, i.e.,

Wl ,r
entr~f!5

1

I 0~a!
exp„7a sin~f!…, ~35!

whereI 0(x) is the first order modified Bessel function. Th
entrance phase distributions are sharply peaked arounf
5(3/2)p ~left well! andf5p/2 ~right well!.

In Fig. 2, we compare full exit phase distributions of t
right well obtained from full numerical simulations of th
Langevin equations with numerical solutions of the ra
equation and the approximative result in Eq.~35!. The nu-
merical solution of the rate equation agrees very well w
the simulation of the Langevin equation, indicating aga
that the rate equations~16! and ~17! represent an excellen
approximation.

C. Residence-time distribution function for small A/D

Fit with the escape-time distribution, conditioned at
fixed phase, and the entrance phase distribution,
residence-time distribution is obtained by averaging
escape-time distribution by the entrance-phase distribut
For symmetric potentials, the residence-time distribution
the same for both potential wells

FIG. 2. The exit-phase distribution of the left well is shown f
A50.2, D50.05, andV50.05 obtained from simulation of the
Langevin equation~1! ~wiggly line!, from the numerical solution of
the rate equations~16! and~17! ~dashed line!, and from the analyti-
cal result~35!, valid for largeA/D ~diamonds!. The phase distribu-
tion is sharply peaked atp/2, the preferred jump-phase.
al
it

e
e
n.
s

r~ t !5E
0

2p

r r~ tuf!Wr
entr~f!df, ~36!

and is obtained in a straightforward calculation as

FIG. 3. The residence time distributions are shown atD50.1
and A50.06 for V50.01 ~a!, V50.05 ~b!, and V50.1 ~c!. The
time and the distribution function are measured in dimension
units. Results obtained from simulations of the Langevin equa
~1! ~dots! are compared with the analytical result in Eq.~37!. The
agreement is excellent. The deviations for small times are due to
failure of the rate-equation approach. The failure for small time
responsible~via the normalization! for the slight underestimation a
later times.
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FIG. 4. The residence time
distribution is shown forA50.2,
D50.05, andV50.05 obtained
from simulation of the Langevin
equation ~1! ~wiggly solid line!
and from numerical solution of
the rate equations~16! and ~17!
~solid line!. The time and the dis-
tribution functions are measure
in dimensionless units.
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r~t!5
1

Z
expX2r KS 11

a2

4 D tCF12a2b
112b2

114b2 sin~Vt!

2
1

2
a2S 112b2

114b2 1b2D cos~Vt!G , ~37!

with the normalization constant

Z5
1

V F 1

b S 12
1

4
a2D2

1

2
a2b

314b2

114b2G . ~38!

Although the leading order correction to the unifor
phase distribution is of second order ina, only terms of the
entrance phase distribution linear ina contribute. We want
to mention here that the result in Eq.~37!, in contrast to
earlier results@13,16#, has been obtained in a systematic w
and is exact in leading ordera2. For smallb, i.e., when the
driving frequencyV is larger than the Kramers rater K(D),
we recover the results in@13# and@16#. For driving frequen-
cies of the order of the Kramers rate or smaller~the relevant
regime for studying SR!, our result in Eq.~37! shows differ-
ences.

In Fig. 3, we compare the numerically obtained residen
time distribution ~by simulation of the Langevin equation!
with the approximation in Eq.~37!. The agreement is excel
lent. The agreement is good up to large values ofA/D51,
where the theory was not expected to work.

The basic features of the residence-time distribution
periodically occurring bumps on an exponentially decayi
background. It has been attempted to characterize SR
terms of the residence-time distribution. In the first pap
@13#, the peak heights attn5(2n11)T/2 have been shown
to exhibit bell-shaped curves as a function of the no
strength. It is tempting to interpret these maxima as evide
of stochastic resonance. However, the reader can easily
vince himself that the residence-time distribution functi
even in the absence of periodic driving, i.e.,
y

ce

re
g
in

er

se
ce
on-
n

r~ tn!A505r K~D !expS 2
2n11

2
r K~D !TD , ~39!

exhibits a bell-shaped curve as a function of the noise D
long as the driving frequency is smaller than the relaxati
rates in the wells.The maxima of the peak heights in th
presence of periodic driving cannot be used as clear-cut
dence of stochastic resonance since they are sitting on
exponential background that itself goes through a maxim
as a function of the noise. Even more misleading, t
maxima ofr(tn)A50 in theabsence of the drivingas a func-
tion of the noise are determined byTrK(D)52/(2n11),
which is for n50 exactly the time scale matching conditio
V5pr K(D), discussed in Sec. II for the response.

Subtracting the exponential background from Eq.~37!
yields an exponentially decaying oscillatory function. Th
amplitudeā of this function att5T/2 ~the deviation from
the undriven residence-time distribution!, i.e.,

ā/V5
1

4
a2b~314b2!exp~2pb!, ~40!

exhibits a resonant shape as a function of the noise stren
The maximizing value of the noise strength, however, is n
equivalent withDTSM, D0 , or DSNR. Similar to the response
amplitude~12!, ā depends on the driving frequency in a mo
notonous fashion.

The amplitudeā is the only meaningful quantity we were
able to extract from the residence-time distribution, whi
shows resonant behavior inD as a consequence of the pe
riodic driving . The frequency dependence ofā is mono-
tonic.

D. Residence-time distribution function „RTDF… for large A/D

Similar to the case of smallA/D, we are fitted with the
necessary tools to compute the residence-time distribution
averaging the escape-time distribution~conditioned with an
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entrance phasef! over the distribution of entrance phas
obtained in the above sections.

For smallV, i.e., V!r K , the phase distribution was un
form and we simply have to integrate the escape-time dis
bution over the entrance phasef. This integration cannot be
done in closed form, but the result can be expressed in
simple form

r~t!5
1

2p
H8~r Kt!,

H~r Kt!5E
0

2p

exp„2r Ktg~f!…df,

g~f!5exp„2a sin~f!…, ~41!

which expressesnonexponentialdecay. In the regimer K
!V!2, the entrance phase distribution for the escape ou
the right well is sharply peaked atp/2, and in a first ap-
proach we can simply set the entrance phase in the esc
time distribution top/2 to obtain~see also@13#!

ra→`~t!5N0 exp„2a cos~Vt!…exp@2bg exp~a!$2n11

1erf„Aa~Vt̄1f02p!…%#. ~42!

The residence-time distribution consists of a sequenc
sharp peaks located at odd multiples of the half-period of
driving. In Fig. 4, we show the residence-time distributi
for A50.2, D50.05, andV50.05 obtained by full simula-
tion of the Langevin equations and by solving numerica
the rate equations with the adiabatic rates. In contrast to
case of smallA/D, the effect of driving is not perturbative
i.e., the peaks are well separated from the background.
valueA/D54 is not large enough for the asymptotic expre
sion in Eq.~42! to apply. To observe SR in the limit of larg
A/D, however, the driving frequency has to be extrem
small. For, e.g.,A50.1 andD50.01 (A/D510), the rate
and, therefore, the driving frequency required for SR has
be of the order of 10211. We consider this frequency rang
practically irrelevant and do not discuss it further.

E. ‘‘Bona-fide’’ stochastic resonance

Gammaitoni and collaborators@15# have introduced the
concept of stochastic resonance as a bona-fide reson
They have computed the area under the peak of
residence-time distribution function~RTDF! at T/2 and have
shown that it runs through a maximum as a function of
noiseand as a function of the driving frequency. Accordin
to Gammaitoniet al., a maximum area under the peak atT/2
corresponds to the situation in which the statistical wait
time between two successful interwell transitionsTK(D)
51/r K(D) matches half the period of the drivingT/2, i.e.,
V5pr K(D).

We have tested this criterion in the case of a mode
value ofA/D.

In Fig. 5~a!, the residence time distributions are shown
a fixed value of the noise strength for four values of t
driving frequency. One important observation in Fig. 5~a! is
that a clear-cut separation of the peak structure and the b
ground is only established for frequencies much larger t
i-

he

of

pe-

of
e

he

he
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y

o

ce.
e

e

g

te

t

ck-
n

the average rate of decrease of the residence-time dist
tion. For frequencies where the decay rate and the driv
frequency are of the same order~the regime where SR take
place!, there is no clear-cut separation. The area under
first peak centered atT/2 ~integrated fromT/22T/4 to T/2
1T/4! is shown in Fig. 5~b! as a function of the frequency a

FIG. 5. ~a! The residence time distribution is shown atD
50.08 and A50.1 for several different frequencies, i.e.,V
50.01, 0.03, 0.05, 0.10. The distribution function and the tim
are measured in dimensionless units. The areaF(V,D) ~in dimen-
sionless units! under the peak centered at the half-period of t
driving T/2 is plotted~b! as a function of the driving frequencyV
~in dimensionless units!. In ~c!, the area under this peak~in dimen-
sionless units! is shown as a function of the noise strength~in di-
mensionless units! at the frequency that maximizes the area in~b!.
The dashed line indicates the value of the noise strengthD50.08
used in~b!. The shift of the dashed line with respect to the ma
mum indicates that maximizing the area as a function of the nois
not mutually equivalent to maximizing the area as a function of
frequency.
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a fixed value of the noise strength. It peaks at aboutVm
50.03, as predicted by the time-scale matching cond
V5pr K(D). The area under the first peak of the residen
time distribution as a function of the noise@see Fig. 5~c!# for
V5Vm peaks, however, at a different value of the noise th
that used in Fig. 5~b!. This shows immediately that the res
nance conditions as a function of the frequency and the n
strength are not mutually equivalent, and therefore not
scribed by the single time-scale matching conditionV
5pr K(D). As a matter of fact, the discrepancy increas
with increasing amplitudeA of the driving.

As we lower the modulation amplitudeA, the peak struc-
ture in the residence-time distribution becomes less p
nounced and eventually, for vanishing modulation amp
tude, disappears. Nevertheless, even in the absence o
modulationA50, the integral of the residence-time distrib
tion from T/22T/4 to T/21T/4 goes through a maximum a
a function of the noise strengthD and the frequencyV
52p/T. This can be shown readily by integratin
the modulated residence-time distribution r(t)
5r K(D)exp„2r K(D)t… from T/22T/4 to T/21T/4, yield-
ing

F~V,D !5E
T/22T/4

T/21T/4

r K~D !exp„2r K~D !t…dt

5expS 2
p

2V
r K~D ! D2expS 2

3p

2V
r K~D ! D .

~43!

The areaF(V,D) exhibits a maximum as a function o
the noise strength and/or as a function of the frequency w
the condition V5„p/ ln(3)…r K(D) is fullfilled, although
there is no periodic driving present. We conclude here tha
the ‘‘resonance’’ in the area under the first peak of t
residence-time distribution observed by Gammaitoniet al. is
no clear-cut evidence of stochastic resonance, but rather pre-
sents a property of the exponential function and the choic
s
i,

f-
ak
av

on
s

i
F

ol
n
-

n

se
e-

s

-
-
the

n

e

of

integration domain. Note also that the ‘‘resonance con
tion’’ V5„p/ ln(3)…r K(D) is close to the time-scale match
ing conditon discussed in Sec. III since ln(3) is close to 1

V. DISCUSSION AND CONCLUSIONS

We have given a very accurate analytical expression
residence-time distributions in periodically driven, noi
bistable systems. The method used is systematic, prod
very accurate results, and is broadly applicable to many o
systems. We have shown, notwithstanding the bulk of lite
ture on SR, that the earlier introduced quantifiers of
based on the residence-time distribution do not~at least for
small driving amplitudes! provide clear-cut evidence of sto
chastic resonance. Especially, the so-called ‘‘bona-fide’’ c
terion with its claim to detect SR even as a function of t
driving frequency appears questionable. We feel that thi
an important issue since in many neurobiological appli
tions of SR, exactly these measures we are questioning h
been used and are being used.

We have introduced a measure to characterize SR b
on the residence-time distribution, i.e., the difference of
residence-time distribution in the presence of modulation
the residence-time distribution in the absence of the mod
tion at t5T/2. In qualitative agreement with the respon
amplitude, this measure shows a resonancelike curve
function of the noise strength, but a monotonic frequen
dependence.
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